SCIENTIFIC REVIEW

Systematic Review and Meta-analysis of Restrictive Perioperative Fluid Management in Pancreaticoduodenectomy

Brian P. Chen¹ · Marian Chen² · Sean Bennett^{1,3} · Kristina Lemon¹ · Kimberly A. Bertens¹ · Fady K. Balaa¹ · Guillaume Martel^{1,3}

Published online: 20 February 2018 © Société Internationale de Chirurgie 2018

Abstract

Background There is significant interest and controversy surrounding the effect of restrictive fluid management on outcomes in major gastrointestinal surgery. This has been most studied in colorectal surgery, although the literature relating to pancreaticoduodenectomy (PD) patients is growing. The aim of this paper was to generate a comprehensive review of the available evidence for restrictive perioperative fluid management strategies and outcomes in PD.

Methods MEDLINE/PubMed, Embase, and the Cochrane Library were searched from inception to April 2017. A review protocol was utilized and registered with PROSPERO. Primary citations that evaluated perioperative fluid management in PD, including those as part of a clinical pathway, were considered. The primary outcome was postoperative pancreatic fistula (POPF). Secondary outcomes included delayed gastric emptying (DGE), complication rate, length of stay (LOS), mortality, and readmission.

Results A total of six studies involving 846 patients were included (2009–2015), of which four were RCTs. Pooled analysis of RCTs and high-quality observational studies found no effect of restrictive intraoperative fluid management on POPF, DGE, complication rate, LOS, mortality, and readmission. Only one study assessed postoperative fluid management exclusively and found prolonged LOS in patients in the restricted fluid group.

Conclusion Based on results of RCTs and high-quality observational studies, intraoperative fluid restriction in PD has not been shown to significantly affect postoperative outcomes. There are too few studies assessing postoperative fluid management to draw conclusions at this time.

This work was presented at the American College of Surgeons Clinical Congress, Washington, DC, October 18, 2016.

Guillaume Martel gumartel@ottawahospital.on.ca

- ¹ Liver and Pancreas Unit, Department of Surgery, The Ottawa Hospital – General Campus, University of Ottawa, 501 Smyth Road, CCW 1667, Ottawa, ON K1H 8L6, Canada
- ² Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- ³ Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada

Introduction

Pancreaticoduodenectomy (PD) has historically been associated with high morbidity and mortality. While perioperative outcomes have improved significantly in recent years owing to improvements in surgical technique, anesthesia, interventional radiology, and critical care, the morbidity following PD remains high, with up to 47% of patient experiencing postoperative complications [1–7]. Postoperative complications after PD are associated with a delay in time to adjuvant therapy for malignant etiologies, shorter overall survival, increased risk of readmission, and substantially increased health care costs [8–12]. In large

part, morbidity after PD is driven by the development of a clinically relevant postoperative pancreatic fistula (POPF) [6]. Overall, 10–15% of patients develop POPF after pancreaticoduodenectomy [2, 6]. Thus, interventions aimed at improving short-term postoperative outcomes in PD are of great interest. While initial studies evaluating the efficacy of perioperative fluid restriction comprised largely of colorectal surgery patients, the body of the literature for other procedures, including PD, is growing [13–16].

The challenge in perioperative fluid management lies in finding the optimal volume status to minimize morbidity. While extensive hypovolemia may lead to tissue damage and organ failure [17], excess fluids can result in poor intestinal anastomotic healing and increased postoperative complications [18–21]. Early studies of intravenous fluid (IVF) administration demonstrated significant benefit with liberal use of IVF, and excess fluids were thought to be renally excreted with no adverse effects [22]. In 2002, a small randomized trial reported delayed return of gastrointestinal function and increased length of stay in patients with excess water and salt balance [23]. This study paved the way for a series of trials assessing the impact of restrictive perioperative fluid management in surgical patients. While some subsequent trials supported the original findings, demonstrating a reduction in postoperative complications and length of stay (LOS) in patients managed with a restrictive fluid regimen [24, 25], other studies failed to reproduce the benefits of fluid restriction on postoperative outcomes [26-29] and some even demonstrated harm [30]. A meta-analysis of randomized trials pertaining to colorectal surgery reported decreased complication rates with fluid restriction, but no effect on mortality and LOS was established [31]. Another metaanalysis that included all patients undergoing abdominal surgery found no difference between restrictive and standard fluid management in complication rates and LOS [32]. Lobo et al. [33] further suggested that both too little and excess fluid administration are detrimental and optimal fluid management should aim for a net fluid balance of zero. These publications have generated interest as well as fueled controversy in perioperative fluid management. Currently, there remains significant variation in opinions and practice regarding perioperative fluid management in abdominal surgery [34].

The aim of this systematic review and meta-analysis was to synthesize current evidence comparing restrictive and standard perioperative fluid management in patients undergoing PD for any indication.

Materials and methods

This systematic review and meta-analysis were conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [35] and the Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guideline [36]. A protocol was devised prospectively and registered with PROSPERO (CRD42016033202).

Search strategy and study selection

Studies were identified through a comprehensive search strategy that was devised by an experienced information specialist (Appendix 1). A combination of medical subject headings (MeSH) and relevant keywords were used to search Ovid MEDLINE, Ovid Embase, and the Cochrane Library for citations published between 1946 and present. The last search was performed on April 11, 2017. No language restriction was applied.

Citations were first screened for inclusion by titles and abstracts. Full texts of the remaining citations were then screened to generate a list of included studies. Both levels of screening were independently performed by two reviewers (BPC, MC). Disagreements among reviewers were resolved by the senior author (GM). Reference lists of included studies were manually screened for missing citations.

Eligibility criteria

Studies that examined perioperative intravenous fluid restriction strategies in patients undergoing PD were included if they reported at least one of the following outcomes of interest: POPF, delayed gastric emptying (DGE), LOS overall complications, mortality (in-hospital, 30 or 90 days), and hospital readmission. Manuscripts that included fluid restriction as part of a clinical enhanced recovery after surgery (ERAS) pathway were also included if they met other inclusion criteria. If the study population consisted of patients undergoing a variety of procedures including PD, the authors were contacted to obtain data specific to PD patients. There were no limitations on patient age, indication for surgery, or technical aspects of PD (e.g., pylorus-preserving, standard). Conference abstracts which were not published in manuscript format were considered if other inclusion criteria were met. Studies that did not provide quantitative data for fluid administration/balance and outcomes of interest were excluded. Other exclusion criteria included case control studies, non-human studies, lack of control group (case reports, case series), poor study quality as determined by

risk of bias assessment, and other article types (reviews, editorials, commentaries, letters).

Risk of bias assessment

Risk of bias and study quality within included studies was assessed by two reviewers (BPC, MC), and disagreements were resolved by consensus. Randomized controlled trials (RCTs) were assessed using The Cochrane Collaboration's tool for assessing risk of bias [37], while observational studies were assessed using the Methodological Index for Non-Randomized Studies (MINORS) [38]. A MINORS score ≥ 17 was considered high quality as previously published [39]. Studies not meeting this threshold were excluded.

Data extraction

Relevant data were extracted by one reviewer (BPC) and checked for accuracy by a second reviewer (MC). Discrepancies were resolved by consensus. The following information was extracted from each included study: country of origin, date of publication, study design, study objective, dates of included data, patient and surgical details (including age, gender, indication for surgery, type of surgery), types of fluid administered, method of grading complications, outcomes of interest, whether the study assessed fluid administration or balance and whether intraoperative or postoperative fluid management was assessed. Authors of articles that only provided data in graphical format were contacted to obtain numerical data.

Data analysis

<u>)</u> Springer

للأستشارات

Data from included studies are included in summary tables and figures. Review outcomes were synthesized narratively. RCTs and high-quality observational studies were included for meta-analysis, which was performed using Review Manager 5.3 (The Cochrane Collaboration, Oxford, UK). Dichotomous variables were analyzed using the Mantel-Haenszel method and reported with odd ratios (OR) and 95% confidence interval (CI). Continuous variables were analyzed using the inverse variance method and reported with mean differences (MD) and 95% CI. For studies that reported LOS with median and range, mean and standard deviation were estimated using published methods [40]. All analyses were first performed using fixed effects models. Study heterogeneity was assessed using the I^2 statistic: <25% was considered low, 25–50% was considered moderate, and >50% was considered high statistical heterogeneity [41]. In cases of high statistical heterogeneity, a random-effect model was used. P < 0.05was considered significant in all analyses.

Results

After duplicate entries were removed, the literature search yielded 865 citations. Following the two-staged screening process described above, six full-text articles were included (Fig. 1). MINORS score of excluded observational studies ranged from 8 to 16 (n = 10 studies).

Characteristics of included studies

The studies include four RCTs [42–45] and two observational studies [46, 47]. All studies were published in English between 2009 and 2015. Multiple attempts were made to contact the authors of one study to obtain graphical data in numerical form, but the study authors did not respond to our requests [47].

Study characteristics are presented in Table 1. A total of 846 patients underwent PD between 2004 and 2013. The mean age was 64.7 years (5 studies), and 58.9% of patients were male (5 studies). Indications for surgery included cancers of the pancreatic head and periampullary or biliary region, duodenal cancer, pancreatic neuroendocrine tumors, unspecified non-pancreatic cancer, and pancreatitis. The type of crystalloids used includes Ringer's Lactate, 0.9% saline with 5% glucose, and Normosol ("isotonic electrolyte solution similar in composition to Lactated Ringer's") [42].

The definition of both restrictive and standard fluid management used in this review is presented in Table 2. Risk of bias assessments within included studies is presented in Table 3. Among the RCTs, fluid restriction interventions occurred intraoperatively in two trials [42, 44] both intra- and postoperatively in one trial [43], and postoperatively in one trial [45]. Among the observational studies, both assessed intraoperative fluids only [46, 47].

Intraoperative fluid management

Pancreatic fistula

POPF was reported as an outcome of interest in five studies [42–44, 46, 47], four of which used the International Study Group for Pancreatic Fistula (ISGPF) definition [48], while one article did not define the criteria used to assess for POPF [42]. Pooled analysis of the five high-quality studies did not demonstrate a relationship between intraoperative fluid management and POPF (OR 0.75, 95% CI 0.44–1.27, p = 0.29, $l^2 = 52\%$) (Fig. 2).

Delayed gastric emptying

Outcomes pertaining to DGE were reported in five studies [42–44, 46, 47], of which two used the International Study Group of Pancreatic Surgery (ISGPS) definition for DGE [49]. One article did not define their criteria for DGE [42], one article defined it as the need for nasogastric (NG) decompression beyond POD10 [47], and one article defined it as need for NG decompression or vomiting beyond POD10 [46]. Pooled analysis of five studies did not demonstrate a significant relationship between intraoperative fluid management and DGE (OR 0.72, 95% CI 0.47–1.11, p = 0.13, $I^2 = 0\%$) (Fig. 2).

Five studies reported overall complication rate, defined as the proportion of patients with at least one complication [42–44, 46, 47]. Studies reported a combination of POPF, DGE, hemorrhage/hematoma, infection, as well as cardiac, pulmonary, gastrointestional, and urogenital complications. One study [46] used the Dindo–Clavien classification system [50], one [42] used a severity classification system described by Grobmyer et al. [6], while the other papers did not use a standardized system. Pooled analysis of five studies did not demonstrate a significant association between complications and restrictive intraoperative fluid

Study	Country	Years	Study design	Outcomes	Ν	Mean age (SD)	Gender (% male)	Indications for surgery	Type of crystalloid used
Van Samkar [44]	Netherlands	2006–2009	RCT	POPF, DGE, LOS, morbidity, mortality	66	NR	NR	Suspected pancreatic head or periampullary tumor	Ringer's Lactate
Braga [46]	Italy	2008–2012	Prospective database	POPF, DGE, LOS, morbidity, mortality, readmission	230	69.0 (2.2)	57.4%	NR	NR
Lavu [43]	US	2011–2013	RCT	POPF, DGE, LOS, morbidity, mortality, readmission	259	67.4 (11.0)	54.1%	Periampullary adenocarcinoma, cystic disease, neuroendocrine, pancreatitis, miscellaneous	Ringer's Lactate
Wang [47]	China	2005–2009	Retrospective	POPF, DGE, LOS, morbidity, mortality	147	53.5 (10.6)	72.8%	Benign or malignant pathology of the pancreas or periampullary region	Crystalloids (0.9% saline, 5% glucose, LR), colloids (HAES, albumin), blood
Fischer [42]	US	2005–2009	RCT	POPF, DGE, LOS, morbidity, mortality	130	64.5 (11.0)	53.1%	Pancreatic, biliary, ampullary, and duodenal cancer; IPMN, pancreatic endocrine neoplasm, others	Normosol (Hospira Inc, Lake Forest, Ill) – isotonic electrolyte solution similar in composition to Lactated Ringer's
Vermeulen [45]	Netherlands	2004–2005	RCT	LOS	14	62.5 (8.6)	78.6%	NR	Ringer's Lactate, mixture of 0.9% NaCl and 5% glucose

Table 1 Characteristics of included studies and patient demographics

All patients were scheduled for PD, but some underwent palliative gastric bypass based on intraoperative findings

management (OR 0.79, 95% CI 0.60–1.04, p = 0.09, $I^2 = 0\%$) (Fig. 2).

Length of stay

Five studies reported LOS [42–44, 46, 47]. Pooled analysis of these studies did not demonstrate a relationship between intraoperative fluid management and LOS (MD 0.04, 95% CI –1.25 to 1.32, p = 0.96, $I^2 = 0$) (Fig. 2).

Mortality

Mortality was reported in five studies [42–44, 46, 47]. Hospital, 30-day, and 90-day mortality were each reported in two studies. Pooled analysis did not demonstrate relationships between intraoperative fluid management and in-

ع springer في الاستشارات

hospital (OR 0.77, 95% CI 0.11–5.59, p = 0.80, $l^2 = 0\%$) (Appendix 2), 30-day (OR 0.81, 95% CI 0.23–2.87, p = 0.74, $l^2 = 0\%$) (Fig. 2), or 90-day mortality (OR 1.31, 95% CI 0.29–5.98, p = 0.73) (Appendix 2).

Readmission

Readmission rate was only reported in two studies [43, 46], and the follow-up period was variable; thus, pooled analysis was not performed. Both studies failed to find a significant difference between groups. Braga et al. reported a 12.2% 30-day readmission rate in the ERAS (restrictive) group, compared to 10.4% in the control (standard) group (p = 0.835) [46]. Similarly, Lavu et al. [43] reported a 12% readmission rate in the hypertonic saline (restrictive) group, compared to 10% in the lactated Ringers (standard)

Table 2 Definitions of "restrictive" and "standard" management

	Defining factor	Restrictive	Standard
van Samkar [44]	Randomization: intraoperative crystalloid infusion rate based on the literature	5 ml/kg/h	10 ml/kg/h
Braga [46]	Implementation of ERAS protocol (which included intraoperative fluid restriction, although details are not reported)	Post-implementation	Pre- implementation
Lavu [43]	Randomization: intra- and postoperative crystalloid infusion rate and type of fluid. Fluid protocols developed by a multidisciplinary group comprising of	Intraoperative: 9 ml/kg/h LR, 1 ml/kg/h HYS	Intraoperative: 15 ml/kg/h LR
	pancreatic surgeons and anesthesiologists based on institutional experience, standard intraoperative fluid paradigm, and the literature review	Postoperative: 1 ml/kg/h HYS	Postoperative: 2 ml/kg/h LR
Wang [47]	Intraoperative fluid infusion rate. Patients were retrospectively split into restrictive and standard groups using the mean infusion rate as the threshold	<8.2 ml/kg/h	\geq 8.2 ml/kg/h
Fischer [42]	Randomization: ANH or standard management	Standard management	ANH
Vermeulen [45]	Randomization: postoperative crystalloid infusion rate. 2.5 L/24 h was determined to be the standard fluid regime following an audit of university hospitals in the Netherlands and was thus set as the standard. 1.5L/24 h appears to have been chosen arbitrarily	1.5 L/24 h	2.5 L/24 h

ERAS enhance recovery after surgery, LR lactated Ringers, HYS 3% hypertonic saline, ANH acute normovolemic hemodilution

Table 3 Risk of bias within included studies (a) Cochrane Risk of Bias for randomized trials; (b) MINORS score for non-randomized studies

	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete data outcome	Selective reporting	Other
(a)							
van Samkar [44]	L	NR	L	L	L	Н	L
Lavu [43]	L	L	L	Н	L	Н	L
Fischer [42]	NR	NR	NR	NR	L	Н	L
Vermeulen [45]	L	L	Н	Н	L	L	L
						MINO	RS score
(b)							
Braga [46]						18	
Wang [47]						17	

(a) H = high, L = low, ? = unclear

(b) Maximum score is 24 [38]. A score greater than or equal to 17 was considered high quality [39]

group. Follow-up time was not specified in this study, however.

Postoperative fluid management

Two studies assessed the postoperative fluid management [43, 45]. Lavu et al. [43] conducted an RCT comparing hypertonic saline at a lower infusion rate and lactated ringers at a higher infusion rate. These fluid differences were maintained intraoperatively and postoperatively on POD0. On POD1, both groups were switched to dextrose

5% in 0.45% normal saline at the same infusion rate. The results of this study have been presented in the pooled analysis of intraoperative data. Vermeulen et al. [45] conducted an RCT exclusively comparing postoperative fluid restriction. Their study included 62 patients undergoing elective major abdominal surgery allocated to either a restricted (1.5 L/24 h) or standard (2.5 L/24 h) postoperative fluid regime. We contacted the authors to acquire raw data specific to PD patients (n = 14) and conducted statistical analysis on this subset of patients using the same test used by the authors (Mann–Whitney U). Average LOS

🖄 Springer

Fig. 2

Chudu an Cultanaun	D + +						
CALLER AND CALLER AND ALLER	Restrict	ive	Standa	rd		Odds Ratio	Odds Ratio
Study of Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Braga 2014	35	115	36	115	27.8%	0.96 [0.55, 1.68]	
Fischer 2010	5	65	14	65	14.8%	0.30 [0.10, 0.90]	
Lavu 2014	21	131	21	128	24.7%	0.97 (0.50, 1.88)	
van Samkar 2015	8	34	4	32	11.5%	2.15 [0.58, 8.01]	
Wang 2014	15	90	18	57	21.2%	0.43 [0.20, 0.95]	
Total (95% CI)		435		397	100.0%	0.75 [0.44, 1.27]	•
Total events	84		02				•
Hotorogonoity: Tou ² -	04 0.19: Chiž	- 9 79	df = 1 (P	- 0.09) IZ - 570	6	
Toot for overall offect:	0.10, CIII 7 = 1.06 /0	- 0.29,	ui – 4 (r	- 0.00), 1 = 525	0	'0.01 0.1 i 1'0 100'
restion overall ellect. 2	2 – 1.00 (r	0.28	9				Favours restrictive Favours standard
DGE							
-	Standa	ard	Restric	tive		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weigh	t M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Brana 2014	11	115	17	115	31.5%	0.61 (0.27 1.37)	
Fiecher 2010	2	65		65	1.0%		
	15	100	2	100	4.0 /	0.60 [0.14, 7.32]	
Lavu 2014	10	131	23	120	42.2%	0.39 [0.29, 1.19]	
van Samkar 2015	13	30	12	24	15.5%	0.76 [0.26, 2.25]	
vvang 2014	8	90	3	57	6.9%) 1.76 [U.45, 6.92]	
Total (95% CI)		431		300	100.0%	0 72 [0 47 1 11]	
Total evente	40	431	67	509	100.0%	, 0.12 [0.41, 1.11]	•
Total events	49 221 AF-	4 (P -	/ כ - چر ۱۷۰۰ ח	- 004			
Telefogeneity: Chi*=	2.21, 01=	4 (r' =) n - 0 - 1	0.70); 1** 2)	- 0%			'0.01 0.1 1 10 100
rest for overall effect:	∠=1.50 (r = 0.1	5)				Favours restrictive Favours control
Complications							
	Restrict	tive	Standa	ard		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Braga 2014	69	115	76	115	26.7%	0.77 [0.45, 1.32]	
Fischer 2010	31	65	32	65	14.7%	0.94 [0.47, 1.87]	-+-
Lavu 2014	56	131	69	128	35.1%	0.64 [0.39, 1.04]	
van Samkar 2015	21	34	15	32	5.2%	1.83 [0.69. 4.88]	
Wang 2014	39	90	30	57	18.3%	0.69 [0.35 1.34]	
			00	0.		0.00 [0.00] 1.04]	
							~
Total (95% CI)		435		397	100.0%	0.79 [0.60, 1.04]	•
Total (95% CI) Total events	216	435	222	397	100.0%	0.79 [0.60, 1.04]	•
Total (95% CI) Total events Heterogeneity: Chi ² = 3	216 3.97. df =	435 4 (P = 0	222).41); l ^z =	397 0%	100.0%	0.79 [0.60, 1.04]	
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect; 2	216 3.97, df = Z = 1.69 (f	435 4 (P = 0 P = 0.09	222).41); l ⁼ = 3)	397 0%	100.0%	0.79 [0.60, 1.04]	
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2	216 3.97, df = Z = 1.69 (f	435 4 (P = 0 P = 0.09	222).41); I² = 3)	397 0%	100.0%	0.79 [0.60, 1.04]	0.01 0.1 1 10 100 Favours restrictive Favours standard
Total (95% CI) Total events Heterogeneity: Chi ² = (Test for overall effect: 2	216 3.97, df= Z=1.69 (f	435 4 (P = 0 P = 0.09	222).41); I ^z = 3)	397 0%	100.0%	0.79 [0.60, 1.04]	0.01 0.1 1 10 100 Favours restrictive Favours standard
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 COS	216 3.97, df= Z = 1.69 (f	435 4 (P = 0 P = 0.09	222).41); I ^z = 3)	397 0%	100.0%	0.79 [0.60, 1.04]	0.01 0.1 1 10 100 Favours restrictive Favours standard
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 3 LOS	216 3.97, df = Z = 1.69 (f	435 4 (P = 0 P = 0.09	222).41); I² = 3)	397 0%	100.0%	0.79 [0.60, 1.04]	0.01 0.1 1 10 100 Favours restrictive Favours standard
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 3 LOS	216 3.97, df = Z = 1.69 (f Restrict	435 4 (P = 0 P = 0.09	222).41); I ² = 3) S	397 0% tandard	100.0%	0.79 [0.60, 1.04] Mean Difference	O.01 0.1 1 10 100 Favours restrictive Favours standard
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 LOS Study or Subgroup M Brace 2014	216 3.97, df = Z = 1.69 (f Restrict <u>Nean S</u>	435 4 (P = 0 P = 0.09 tive <u>D Tota</u>	222).41); I ² = 3) S [:] I <u>Mean</u>	397 0% tandard SD	100.0%	0.79 [0.60, 1.04] Mean Difference <u>Weight IV, Fixed, 95%</u>	O.01 O.1 1 10 100 Favours restrictive Favours standard
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 3 LOS <u>Study or Subgroup M</u> Braga 2014	216 3.97, df = Z = 1.69 (f Restrict <u>lean S</u> 14.6 9.	435 4 (P = 0 P = 0.09 tive <u>D Tota</u> 8 119	222 3.41); ² = 3) S ^r 1 <u> Mean</u> 5 16.1	397 0% tandard <u>SD</u> 8.9	100.0%	Mean Difference <u>Weight</u> IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 28.3% -1.50 [-3.92, 0.	O.01 0.1 1 10 100 Favours restrictive Favours standard Mean Difference Cl IV, Fixed, 95% Cl 92]
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 LOS <u>Study or Subgroup N</u> Braga 2014 Fischer 2010	216 3.97, df = Z = 1.69 (f Restrict <u>Idean S</u> 14.6 9. 7 14.7	435 4 ($P = 0$ P = 0.09 tive <u>D Tota</u> 8 119 5 69	222).41); I ² = 3) <u>I Mean</u> 5 16.1 5 8 1 7	397 0% tandard <u>SD</u> 8.9 32	100.0% <u>Total</u> 115 65 129	Mean Difference <u>Weight</u> <u>IV, Fixed, 95%</u> 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 4.48% 0.00 (4.02.14)	0.01 0.1 1 10 100 Favours restrictive Favours standard Mean Difference CI IV, Fixed, 95% CI 921 931
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 LOS <u>Study or Subgroup M</u> Braga 2014 Fischer 2010 Lavu 2014 en Samker 2015	216 3.97, df = Z = 1.69 (f Restrict Mean S 14.6 9. 7 14.7 7 9.3 12 9.5	435 4 (P = 0 P = 0.09 <u>D Tota</u> 8 119 5 69 3 13	222).41); ² = 3) <u>I Mean</u> 5 16.1 5 8 1 7 4 10	397 0% tandard <u>SD</u> 8.9 32 6.167 22.192	100.0% Total 1 115 5 128	Mean Difference <u>Weight</u> <u>IV, Fixed, 95%</u> 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 L-5.21 1.0	0.01 0.1 1 10 100 Favours restrictive Favours standard Ce Mean Difference 6 Cl IV, Fixed, 95% Cl 92]
Total (95% CI) Total events Heterogeneity: Chi ² = (Test for overall effect: 2 LOS <u>Study or Subgroup M</u> Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wann 2014	216 3.97, df= Z = 1.69 (f <u>Restrict</u> <u>Mean S</u> 14.6 9. 7 14.7 7 9.3 12 8.59 153 0.2	435 4 (P = 0 P = 0.09 <u>D Tota</u> 8 119 5 69 3 13 8 34 8 34	222).41); I ² = 3) <u>I Mean</u> 5 16.1 5 8 1 7 4 10 1 19.52	397 0% tandard <u>SD</u> 32 6.167 22.189 7 54	100.0% <u>Total</u> 115 65 128 32 57	Mean Difference Meight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 2.2 % 1.96 Lor 27. 4	0.01 0.1 1 10 100 Favours restrictive Favours standard
Total (95% CI) Total events Heterogeneity: Chi [≈] = 3 Test for overall effect: 2 COS <u>Study or Subgroup M</u> Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2	216 3.97, df = Z = 1.69 (f <u>Rean S</u> 14.6 9, 7 14.7 7 9.3 12 8.59 11.53 9.2	435 4 (P = 0 P = 0.09 <u>D Tota</u> 8 119 5 69 3 13 8 34 8 34 4 90	222).41); I ² = 3) <u>I Mean</u> 5 16.1 5 8 1 7 4 10 0 19.57	397 0% tandard <u>SD</u> 32 6.167 22.189 7.54	100.0% Total 1 115 55 128 32 57	Mean Difference Neight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 22.2% 1.96 [-0.77, 4.	0.01 0.1 1 10 100 Favours restrictive Favours standard
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 LOS <u>Study or Subgroup M</u> Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI)	216 3.97, df = Z = 1.69 (f <u>Nean S</u> 14.6 9, 7 14.7 7 9.3 12 8.59 1.53 9.2	435 4 (P = 0 P = 0.09 tive <u>D Tota</u> 8 119 5 69 3 139 18 39 18 39 14 91 439	222).41); I ² = 3) <u>I Mean</u> 5 16.1 5 8 1 7 4 10 0 19.57 5	397 0% tandard 8.9 32 6.167 22.189 7.54	100.0% <u>Total</u> <u>115</u> 5 128 32 57 397	Mean Differenc Weight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 2.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1.:	0.01 0.1 1 10 100 Favours restrictive Favours standard Se Mean Difference 6 Cl IV, Fixed, 95% Cl 92]
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 LOS <u>Study or Subgroup</u> M Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi ² = 3 2	216 3.97, df = Z = 1.69 (f <u>lean S</u> 14.6 9 7 14.7 7 9.3 12 8.59 11.53 9.2	435 4 (P = 0 P = 0.09 0 Tota 0 Tota 13 13 13 13 13 13 13 13 14 91 432 2 = 0 44	222 .41); I ^P = 3) S 1 <u>Mean</u> 5 16.1 5 8 1 7 4 10 0 19.57 5); I ^P = 0%	397 0% tandard 8.9 32 6.167 22.189 7.54	100.0% Total 1 115 65 128 32 57 397	Mean Differenc <u>Weight</u> IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 22.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1.	0.01 0.1 10 100 Favours restrictive Favours standard Se Mean Difference 6CI IV, Fixed, 95% CI 92]
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 LOS <u>Study or Subgroup</u> <u>N</u> Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi ² = 3.7 Test for overall effect 7 =	216 3.97, df = Z = 1.69 (f <u>Restrict</u> <u>14.6 9</u> 7 14.7 7 9.3 12 8.59 11.53 9.2 73, df = 4 (f = 0.06 (P	435 4 (P = 0 P = 0.09 0 Tota 5 69 3 13 13 13 13 13 13 13 13 13 13 13 13 13 1	222 .41); I ² = 3) S <u>I Mean</u> 5 16.1 5 8 1 7 4 10 0 19.57 5); I ² = 0%	397 0% tandard 8.9 32 6.167 22.189 7.54	100.0% Total 1 115 65 128 32 57 397	Mean Difference Mean Difference Neight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.27, 1. 2.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1.3]	$\begin{array}{c} \bullet \\ 0.01 \\ Favours restrictive \\ Favours standard \\ \hline \\ & Cl \\ & P2 \\ & 22 \\ & 22 \\ & 22 \\ & 21 \\ & 22 \\ & 21 \\ & 22 \\ & 21 \\ & 21 \\ & 22 \\ & 21 \\ & $
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 LOS <u>Study or Subgroup M</u> Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi ² = 3.7 Test for overall effect: Z =	216 3.97, df = Z = 1.69 (f <u>Nean S</u> 14.6 9 7 14.7 7 9.3 12 8.59 11.53 9.2 73, df = 4 (F = 0.06 (P =	435 4 (P = 0 P = 0.09 <u>D Tota</u> 8 119 5 69 3 13 8 34 90 4 91 439 P = 0.44 0.96)	222 .41); I ² = 3) S 1 Mean 5 16.1 5 8 1 7 4 10 19.57 5); I ² = 0%	397 0% tandard <u>SD</u> 8.9 32 6.167 22.189 7.54	100.0% Total 1 115 65 128 327 57 397	Mean Difference <u>Weight</u> IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 22.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1.3%]	Mean Difference ACL IV, Fixed, 95% CI 921 57] 921 57] 921 57] 921 57] 921 57] 921 57] 921 57] 921 57] 921 57] 921 57] 921 57] 921 57] 57] 57] 57] 57] 57] 57] 57]
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 LOS Study or Subgroup M Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi ² = 3.7 Test for overall effect: Z =	216 3.97, df= Z = 1.69 (f <u>Restrict</u> <u>Iean S</u> 14.6 9, 7 14.7 7 9.3 12 8.59 11.53 9.2 73, df = 4 (f = 0.06 (P =	435 4 (P = 0 P = 0.09 <u>D Tota</u> 8 119 5 69 3 13 3 3 3 3 4 91 4 39 - 0.44 0.96)	222).41); ² = 3) <u>I Mean</u> 5 16.1 5 8 1 7 4 10 0 19.57 5); ² = 0%	397 0% tandard 8.9 32 6.167 22.189 7.54	100.0% Total 0 115 65 128 32 57 397	Mean Difference Weight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 22.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1.	Mean Difference CI IV, Fixed, 95% CI 921 573 921 10 693 322 -10 Favours restrictive Favours standard
Total (95% CI) Total events Heterogeneity: Chi [≈] = 3 Test for overall effect: 2 LOS Study or Subgroup M Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi [≈] = 3.7 Test for overall effect: Z = 30-Day Mortality	216 3.97, df = Z = 1.69 (f 1ean S 14.6 9, 7 14.7, 7 9.3 12 8.59 1.53 9.2 73, df = 4 (f = 0.06 (P =	435 4 (P = 0 P = 0.09 0 Tota 8 114 5 66 3 13° 8 30 4 90 439 P = 0.44 0.96)	222 0.41); ² = 3) <u>I Mean</u> 5 16.1 5 8 1 7 4 10 0 19.57 5); ² = 0%	397 0% <u>SE</u> 8.9 32 6.167 22.188 7.54	100.0% Total 1 115 5 128 32 57 397	Mean Difference Weight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 22.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1.3]	Mean Difference ACL IV, Fixed, 95% Cl 921 571 921 573 921 575 925 575 925 575 925 575 925 575 925 575 925 575 925 575 925 575 925 575 925 575 925 575 925 575 925 575 925 925 925 925 925 925 925 92
Total (95% CI) Total events Heterogeneity: Chi [≈] = 3 Test for overall effect: 2 LOS <u>Study or Subgroup</u> M Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi [≈] = 3.7 Test for overall effect: Z = 30-Day Mortality	216 3.97, df = Z = 1.69 (f <u>Restrict</u> <u>14.6 9</u> 7 14.7 7 9.3 12 8.59 1.53 9.2 73, df = 4 (f = 0.06 (P =	435 4 (P = 0 P = 0.05 10 10 10 10 10 10 10 10 10 10	222 0.41); ² = 3) S 1 Mean 5 16.1 5 8 1 7 4 10 0 19.57 5); ² = 0%	397 0% tandard 8.9 32 6.167 7.54	100.0% Total 1 115 57 397	Mean Difference <u>Weight</u> IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 22.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1.3]	Mean Difference N, Fixed, 95% Cl V, Fixed, 95% Cl V, Fixed, 95% Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 LOS <u>Study or Subgroup</u> M Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi ² = 3.7 Test for overall effect: Z = 60-Day Mortality	216 3.97, df= Z = 1.69 (f <u>Nean S</u> 14.6 9. 7 14.7 7 9.3 12 8.59 1.53 9.2 73, df = 4 (f = 0.06 (P =	435 4 (P = 0 P = 0.09 10 10 10 10 10 10 10 10 10 10	222 .41); I ^z = 3) <u>I Mean</u> 5 16.1 5 8 1 7 4 10 0 19.57 5); I ^z = 0% Standa	397 0% tandard <u>SD</u> 32 6.167 7.54	100.0% Total 115 65 128 32 57 397	Mean Difference Mean Difference Neight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 2.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1.: 00dds Ratio 0.004 Ratio	Mean Difference Cl IV, Fixed, 95% Cl 92] 57] 92] 10 57] 92] 10 Favours restrictive Favours standard Favours restrictive Favours standard Odds Ratio
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 LOS <u>Study or Subgroup</u> M Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi ² = 3.7 Test for overall effect: Z = 30-Day Mortality <u>Study or Subgroup</u>	216 3.97, df = Z = 1.69 (f 1ean S 14.6 9, 7 14.7 7 9.3 12 8.59 1.53 9.2 73, df = 4 (f = 0.06 (P = Restrict Events	435 4 (P = 0 P = 0.09 10 Total 8 119 5 69 3 13 8 34 4 90 439 P = 0.44 0.96) tive Total	222 .41); I ^P = 3) <u>I Mean</u> 5 16.1 5 8 1 7 4 10 0 19.57 5); I ^P = 0% Standa Events	397 0% tandard <u>SD</u> 8.9, 32 32 8.167 7.54 7.54	100.0% Total 115 65 128 32 57 397	Mean Differenc <u>Weight</u> IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 22.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1.: Odds Ratio M-H, Fixed, 95% CI	0.01 0.1 10 100 Favours restrictive Favours standard Mean Difference CI IV, Fixed, 95% CI 92] 57] 92] 10 -5 Favours restrictive Favours standard Odds Ratio M-H, Fixed, 95% CI
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 LOS <u>Study or Subgroup</u> M Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi ² = 3.7 Test for overall effect: Z = 30-Day Mortality <u>Study or Subgroup</u> Braga 2014	216 3.97, df = Z = 1.69 (f Restrict <u>lean S</u> 14.6 9 7 14.7 7 9.3 12 8.59 (1.53 9.2 73, df = 4 (f = 0.06 (P = <u>Restrict</u> <u>Events</u> 4	435 4 (P = 0 P = 0.09 10 10 10 10 10 10 10 10 10 10	222 .41); I ^P = 3) <u>I Mean</u> 5 16.1 5 8 1 7 4 10 0 19.57 5); I ^P = 0% <u>Standa</u> <u>Events</u> 4	397 0% tandard SE 8.9 32 8.167 7.54 7.54 7.54	100.0% Total 1 115 57 397 Weight 71.9%	Mean Difference Weight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.2.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1.: 000.0% 0.04 [-1.25, 1.: 00dds Ratio M-H, Fixed, 95% CI 1.00 [0.24, 4.10] 1.00 [0.24, 4.10]	Mean Difference A CL IV, Fixed, 95% CI 22 57 92 57 92 10 -10 Favours restrictive Favours standard 0 dds Ratio M-H, Fixed, 95% CI
Total (95% CI) Total events Heterogeneity: Chi [≈] = 3 Test for overall effect: 2 LOS <u>Study or Subgroup</u> M Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi [≈] = 3.7 Test for overall effect: Z = 30-Day Mortality <u>Study or Subgroup</u> Braga 2014 Lavu 2014	216 3.97, df= Z = 1.69 (f Restrict 14.6 9, 7 14.7 7 9.3 12 8.59 1.53 9.2 73, df = 4 (f = 0.06 (P = Restrict <u>Events</u> 4 0	435 4 (P = 0 P = 0.09 0 Tota 8 114 3 13 8 3 4 9 43 P = 0.44 0.96 tive Total 115 131	222 0.41); ² = 3) <u>I Mean</u> 5 16.1 5 8 1 7 4 10 0 19.57 5); ² = 0% <u>Standa</u> <u>Events</u> 4 1	397 0% tandard SE 8.9 32 6.167 32 22.189 7.54 7.54 rrd Total 115 128	100.0% Total 0 115 65 128 32 57 397 Weight 71.9% 28.1%	Mean Difference Weight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 22.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1.: Odds Ratio M-H, Fixed, 95% CI 1.00 [0.24, 4.10] 0.32 [0.01, 8.01]	Mean Difference A Mean Difference A CL IV, Fixed, 95% Cl 92] 57] 92] 10 -10 Favours restrictive Favours standard 0dds Ratio M-H, Fixed, 95% Cl
Total (95% CI) Total events Heterogeneity: Chi [≈] = 3 Test for overall effect: 2 LOS Study or Subgroup M Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi [≈] = 3.7 Test for overall effect: Z = 30-Day Mortality Study or Subgroup Braga 2014 Lavu 2014	216 3.97, df = Z = 1.69 (f Restrict 14.6 9, 14.6 9, 7 14.7, 7 9.3 12 8.59 1.53 9.2 73, df = 4 (f = 0.06 (P = Restrict <u>Events</u> 4 0	435 4 (P = 0 P = 0.05 0 Tota 8 119 5 64 3 13° 8 3° 4 90 439 P = 0.44 0.96) tive <u>Total</u> 115 131	222 0.41); ² = 3) <u>I Mean</u> 5 16.1 5 8 1 7 4 10 0 19.57 5 5); ² = 0% <u>Standa</u> <u>Events</u> 4 1	397 0% tandard <u>SD</u> 8.9 32 6.167 22.188 7.54 7.54	100.0% Total 1 115 65 128 32 57 397 Weight 71.9% 28.1%	Mean Difference Weight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 22.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1 Odds Ratio M-H, Fixed, 95% CI 1.00 [0.24, 4.10] 0.32 [0.01, 8.01]	Mean Difference A CL IV, Fixed, 95% CL V, Fixed, 95% CL V, Fixed, 95% CL Cl CL IV, Fixed, 95% CL Cl CL IV, Fixed, 95% CL CL IV, Fixed, 95% CL CL IV, Fixed, 95% CL CL IV, Fixed, 95% CL CL IV, Fixed, 95% CL
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 LOS <u>Study or Subgroup</u> M Braga 2014 Van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi ² = 3.7 Test for overall effect: Z = 30-Day Mortality <u>Study or Subgroup</u> Braga 2014 Lavu 2014 Total (95% CI)	216 3.97, df = Z = 1.69 (f <u>Nean S</u> 14.6 9, 7 14.7 7 9.3 12 8.59 1.53 9.2 73, df = 4 (f = 0.06 (P = <u>Restrict</u> <u>Events</u> 4 0	435 4 (P = 0 P = 0.05 10 10 10 10 10 10 10 10 10 10	222 0.41); ² = 3) <u>I Mean</u> 5 16.1 5 8 1 7 4 10 0 19.57 5 5); ² = 0% <u>Standa</u> <u>Events</u> 4 1	397 0% tandard <u>SD</u> 8.9 32 6.167 22.188 7.54 7.54 ard 115 128 243	100.0% Total 115 65 128 32 57 397 Weight 71.9% 28.1% 100.0%	Mean Difference Mean Difference Neight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 22.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1. Odds Ratio M-H, Fixed, 95% CI 1.00 [0.24, 4.10] 0.32 [0.01, 8.01] 0.81 [0.23, 2.87]	0.01 0.1 10 100 Favours restrictive Favours standard
Total (95% CI) Total events Heterogeneity: Chi ² = : Test for overall effect: 2 LOS <u>Study or Subgroup</u> M Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi ² = 3.7 Test for overall effect: Z = 30-Day Mortality <u>Study or Subgroup</u> Braga 2014 Lavu 2014 Total (95% CI) Total (95% CI) Total events	216 3.97, df= Z = 1.69 (f <u>Nean S</u> 14.6 9, 7 14.7 7 9.3 12 8.59 1.53 9.2 73, df = 4 (f = 0.06 (P = <u>Restrict</u> <u>Events</u> 4 0	435 4 (P = 0 P = 0.09 10 11 13 4 (P = 0 13 13 13 13 13 13 13 13 13 13	222).41); F= 3) S 1 Mean 5 16.1 5 8 1 7 4 10 0 19.57 5); F= 0% Standa Events 4 1 5	397 0% tandard <u>SD</u> 32 6.167 22.186 7.54 rrd <u>Total</u> 115 128 243	100.0% Total 115 65 128 32 57 397 Weight 71.9% 28.1% 100.0%	Mean Difference Mean Difference Neight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 2.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1.: Odds Ratio M-H, Fixed, 95% CI 1.00 [0.24, 4.10] 0.32 [0.01, 8.01] 0.81 [0.23, 2.87]	Mean Difference Cl IV, Fixed, 95% Cl 92] 57] 92] 10 -5 Favours restrictive Favours standard 0.01 0.1 10 100 Favours standard 00 00 00 00 00 00 00 00 00 0
Total (95% CI) Total events Heterogeneity: Chi ² = 3 LOS <u>Study or Subgroup</u> M Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi ² = 3.7 Test for overall effect: Z = 0-Day Mortality <u>Study or Subgroup</u> Braga 2014 Lavu 2014 Total (95% CI) Total events Heterogeneity: Chi ² = 4	216 3.97, df= Z = 1.69 (f 1ean S 14.6 9 7 14.7 7 9.3 12 8.59 1.53 9.2 73, df = 4 (f = 0.06 (P = Restrict <u>Events</u> 4 0 4 0 4 0	435 4 (P = 0 P = 0.09 10 11 115 131 246 1 (P = 0	222).41); F= 3) S 1 Mean 5 16.1 5 8 17 4 10 0 19.57 5); F= 0% Standa Events 4 1 5 5 5 5 5 5 5 5 5 5 5 5 5	397 0% tandard <u>SE</u> 8.9 32 8.187 7.54 7.54 ard 115 128 243 0%	100.0% Total 115 65 128 32 57 397 Weight 71.9% 28.1% 100.0%	Mean Difference Meight IV, Fixed, 95% 28.3% -1.50 [-3.32, 0. 2.3% -1.50 [-3.22, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 22.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1. Odds Ratio M-H, Fixed, 95% CI 1.00 [0.24, 4.10] 0.32 [0.01, 8.01] 0.81 [0.23, 2.87]	Mean Difference A Mean Difference A CI IV, Fixed, 95% CI 92] 57] 92] 57] 92] 10 -10 Favours restrictive Favours standard 0dds Ratio M-H, Fixed, 95% CI
Total (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 LOS Study or Subgroup M Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi ² = 3.7 Test for overall effect: Z = 30-Day Mortality Study or Subgroup Braga 2014 Lavu 2014 Total (95% CI) Total events Heterogeneity: Chi ² = 0 Test for overall effect	216 3.97, df= Z = 1.69 (f Restrict 14.6 9, 7 14.7 7 9.3 12 8.59 1.53 9.2 73, df = 4 (f = 0.06 (P = Restrict <u>Events</u> 4 0 0 4 0.40, df = 7 - 0.22 (f - 0.22 (f)	435 4 (P = 0 D Tota 8 114 5 63 3 13° 8 3° 4 9° 43° P = 0.44° 0.96) tive Total 115 131 246 1 (P = 0	222 (.41); r=3) S (1 Mean) 5 16.1 5 16.1 5 16.1 1 7 4 10 1 19.57 5 (.75); r=0% Standa Events 4 1 5 (.53); r=3	397 0% tandard SE 8.9 32 6.167 7.54 7.54 7.54 115 128 243 0%	100.0% Total 1 115 65 128 32 57 397 Weight 71.9% 28.1% 100.0%	Mean Difference Weight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 22.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1. Odds Ratio M-H, Fixed, 95% CI 1.00 [0.24, 4.10] 0.32 [0.01, 8.01] 0.81 [0.23, 2.87]	Mean Difference A CL IV, Fixed, 95% Cl 921 57] 921 57] 921 57] 921 10 -5 0 Favours restrictive Favours standard 0 0 0 0 0 0 0 0 0 0 0 0 0
Total (95% CI) Total events Heterogeneity: Chi ² = 3 LOS <u>Study or Subgroup</u> M Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi ² = 3.7 Test for overall effect: Z = 0-Day Mortality <u>Study or Subgroup</u>	216 3.97, df = Z = 1.69 (f <u>Nean S</u> 14.6 9, 7 14.7 7 9.3 12 8.59 1.53 9.2 73, df = 4 (f = 0.06 (P = <u>Restrict</u> <u>Events</u>	435 4 (P = 0 P = 0.09 0 Tota 8 119 5 64 3 13 18 34 4 90 439 0.96) tive Total	222 .41); I ^r = 3) <u>I Mean</u> 5 16.1 5 16.1 1 7 4 10 0 19.57 5); I ^r = 0% <u>Standa</u> <u>Events</u>	397 0% tandard <u>SD</u> 32 6.167 7.54 7.54	100.0% Total 115 65 128 32 57 397 Weight	Mean Difference Mean Difference Neight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 2.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1.: Odds Ratio M-H, Fixed, 95% CI	Mean Difference Cl IV, Fixed, 95% Cl P2 P2 P2 P2 P2 P2 P2 P2 P2 P2
Total (95% CI) Total events Heterogeneity: Chi ² = 3 LOS <u>Study or Subgroup</u> M Braga 2014 Fischer 2010 Lavu 2014 van Samkar 2015 Wang 2014 2 Total (95% CI) Heterogeneity: Chi ² = 3.7 Test for overall effect: Z = 0-Day Mortality <u>Study or Subgroup</u> Braga 2014 Lavu 2014 Total (95% CI) Total events Heterogeneity: Chi ² = 0	216 3.97, df = Z = 1.69 (f Restrict 14.6 9, 7 14.7 7 9.3 12 8.59 1.53 9.2 73, df = 4 (f = 0.06 (P = Restrict <u>Events</u> 4 0 4 0 4 0 4 0	435 $4 (P = 0)$ $D = 0.05$ $C = 0.05$ C	222 0.41); ² = 3) <u>I Mean</u> 5 16.1 5 8 1 7 4 10 0 19.57 5 5); ² = 0% <u>Standa</u> <u>Events</u> 4 1 5 ().53); ² =	397 0% tandard <u>SD</u> 8.9 32 6.167 22.188 7.54 7.54 115 128 243 0%	100.0% Total 1 115 65 128 32 57 397 Weight 71.9% 28.1% 100.0%	Mean Difference Meight IV, Fixed, 95% 28.3% -1.50 [-3.92, 0. 2.3% -1.00 [-9.57, 7. 44.8% 0.00 [-1.92, 1. 2.5% 2.00 [-6.21, 10. 22.2% 1.96 [-0.77, 4. 100.0% 0.04 [-1.25, 1.3] Odds Ratio M-H, Fixed, 95% CI 1.00 [0.24, 4.10] 0.32 [0.01, 8.01] 0.81 [0.23, 2.87]	Mean Difference Mean Difference Mean Difference N, Fixed, 95% Cl Mean Difference N, Fixed, 95% Cl Mean Difference N, Fixed, 95% Cl The sector of the

for patients in the restricted group was 20.8 days (range 11–72 days), compared to 9.8 days (range 8–20 days) in the standard group (p = 0.042).

Discussion

Previous reviews of perioperative fluid management have focused on colorectal surgery [31] or intraabdominal surgery in general [32, 33]. In this paper, we reviewed the literature on perioperative fluid management in PD and pooled data from RCTs and high-quality observational studies. There was no relationship between intraoperative fluid management and any of outcomes of interest: POPF, DGE, complications, LOS, mortality, and hospital readmission. Only one study exclusively compared postoperative fluid management and found longer LOS associated with patients in the restricted postoperative fluid group [45]. However, given the small sample size of patients undergoing PD in this study (n = 14), the results must be interpreted with caution.

Fluid replacement is simple in theory: replace what is lost and avoid fluid overload [51]. However, the difficulty lies in accurately determining the volume of fluids to be replaced. With the advent of noninvasive physiologic monitoring tools, an increasing number of trials are exploring goal-direct fluid therapy (GDFT), which focuses on using physiologic proxies of tissue perfusion to guide fluid administration [22, 52, 53]. Although many physiologic directed measurements, such as systolic pressure variation, stroke volume variation, and central venous pressure, have been studied, there remains no consensus on the most appropriate target [53]. Furthermore, high-quality evidence is lacking [54] and a recent systematic review did not find convincing evidence that intraoperative GDFT significantly improved short-term outcomes over conventional fluid management in patients undergoing major abdominal surgery, especially if patients were managed on an enhanced recovery pathway [55].

Restrictive fluid management remains controversial in general surgery. Most published guidelines for perioperative fluid management advocate for fluid restriction, although most of these are not specific to PD. A consensus statement from the enhanced recovery partnership in England recommended avoiding excess crystalloids, limiting maintenance fluids intraoperatively, and avoiding postoperative intravenous fluids if possible [52]. The International Fluid Optimization Group recommends restrictive maintenance fluids for major and lengthy procedures (>6 h), but suggests a possible benefit of higher fluid administration rates for smaller outpatient procedures [53]. The ERAS society's guidelines for PD call for "near zero fluid balance," but this recommendation is based primarily on evidence from colorectal surgery [56].

A meta-analysis of RCTs found decreased overall morbidity in patients managed with a restrictive fluid protocol for colorectal surgery [31]. A subsequent metaanalysis of RCTs evaluating fluid restriction in major abdominal surgery failed to find any effect, even though 5 of 7 studies included in the meta-analysis featured primarily or exclusively patients undergoing colorectal surgery [32]. Varadhan and Lobo suggested that fluid balance is more important than fluid administration by demonstrating superior outcomes in patients managed in a state of fluid "balance" rather than "imbalance" following major elective open abdominal surgery [33]. Given that PD is a lengthy procedure with extensive retroperitoneal dissection, it is plausible that patients experience greater insensible fluid losses than colorectal resection. As such patients may be closer to a zero fluid balance at the same rate of fluid administration. This may partially account for the lack of benefit with restrictive fluid management in these patients.

This paper reviewed the best available evidence in restrictive fluid management in PD by pooling data from RCTs and high-quality observational studies, but major limitations remain. The variability in defining "restrictive" and "standard" fluid management between studies is perhaps the most significant limitation. In part, the lack of evidence-based recommendations for perioperative fluid management contributes to this inconsistency [25, 51]. This variation is highlighted in Table 2. In many retrospective studies, authors simply stratified patients into groups using the median fluid volume as a cutoff. The RCTs were also heterogeneous. Among the three RCTs, one restricted intraoperative fluids, one restricted both intra- and postoperative fluids, and the other was not originally designed to compare fluid restriction, but rather to evaluate acute normovolemic hemodilution [42]. Furthermore, included studies were not consistent in the type of crystalloid used. This is further complicated with one study using colloids as a strategy to restrict the total fluid administration [43]. Despite the heterogeneity in study design, there was minimal statistical heterogeneity in the results ($I^2 = 0\%$ for all outcomes except POPF). In addition, means and standard deviations were estimated for studies that reported median and range for LOS [40]. While this estimation method receives widespread use and acceptance, it remains an estimate rather than a precise value. Lastly, only one study exclusively assessed the impact of postoperative fluid restriction [45]; thus, it is difficult to draw conclusions about the utility of postoperative fluid restriction. Additionally, this trial was terminated prematurely after failing to reach their target number of patients within the planned timeframe. Furthermore,

🖄 Springer

study protocol was frequently violated due to postoperative hypotension, oliguria, or infusion pump problems that lead to additional fluid boluses being given or incorrect volumes

Conclusion

infused.

Pooled analysis of the best available evidence showed that restrictive intraoperative fluid management did not have an effect on postoperative outcomes in patients undergoing PD. Pooled studies were heterogeneous in their study design, the most notable issue being the variability in defining "restrictive" and "standard" fluid management. Thus, these results should be interpreted with caution. To date, there are too few studies specific to PD assessing postoperative fluid restriction to draw a conclusion with regards to its efficacy.

Appendix 1: Search strategy

Database: Embase Classic + Embase <1947 to 2017 April 11>, Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations and Ovid MEDLINE(R) <1946 to Present>

Search Strategy:

- 1 pancreas resection/(18092)
- 2 pancreaticoduodenectomy/(19623)
- 3 (whipple\$ adj5 (pancrea\$ or surg\$ or resect\$ or procedure\$ or operation\$)).tw. (4368)
- 4 (Pancreatectom\$ or pancreatoduodenectom\$ or Pancreaticoduodenectom\$ or duodenopancreatectom\$ or pancreat\$ duodenectom\$).tw. (34610)
- 5 ((duodenopancrea\$ or pancrea\$) adj2 resect\$).tw. (14789)
- 6 ((duodenopancrea\$ or pancrea\$) adj2 (surg* or resect\$)).tw. (22187)
- 7 or/1-6 (60116)
- 8 fluid therapy/or fluid resuscitation/(40831)
- 9 rehydration/(21709)
- 10 crystalloid/(6023)
- 11 colloid/(39788)

<u>⁽∕</u> Springer

- 12 isotonic solution/(12623)
- 13 (crystalloid* or colloid*).tw. (105122)
- 14 (fluid adj3 (balance or intervention or management or volume or therapy or replacement or restriction or resuscitation)).tw. (59280)
- 15 (volume adj3 (balance or intervention or management or therapy or replacement or restriction or resuscitation)).tw. (11794)
- 16 hetastarch/or Ringer lactate solution/or sodium chloride/ (228503)
- 17 (ringer* adj2 lactate*).tw. (8908)

- hypertonic solution/(6263)
- 19 d5w.tw. (620)
- 20 dextrose.tw. (21245)
- 21 (saline or sodium chloride).tw. (374747)
- 22 or/8-21 (716901)
- 23 7 and 22 (803)
- 24 (enhanced recovery or eras).tw. (8409)
- 25 clinical pathway/(11909)
- 26 (caremap* or care map*).tw. (500)
- 27 (care adj (plan* or pathway*)).tw. (28718)
- 28 ((critical or clinical) adj pathway*).tw. (8531)
- 29 (early recovery or fast track* or fasttrack*).tw. (11746)
- 30 early discharge.tw. (5089)
- 31 or/24-30 (67709)
- 32 7 and 31 (293)
- 33 23 or 32 (1074)
- 34 (exp animal/or non-human/) not exp human/(10231631)
- 35 33 not 34 (907)
- 36 35 use emczd (639)
- 37 Pancreatectomy/(28609)
- 38 Pancreaticoduodenectomy/(19623)
- 39 (whipple\$ adj5 (pancrea\$ or surg\$ or resect\$ or procedure\$ or operation\$)).tw. (4368)
- 40 (Pancreatectom\$ or pancreatoduodenectom\$ or Pancreaticoduodenectom\$ or duodenopancreatectom\$ or pancreat\$ duodenectom\$).tw. (34610)
- 41 ((duodenopancrea\$ or pancrea\$) adj2 (surg* or resect\$)).tw. (22187)
- 42 or/37-41 (64033)
- 43 Fluid Therapy/(33370)
- 44 Rehydration Solutions/(3776)
- 45 Isotonic Solutions/(12623)
- 46 exp Colloids/(126940)
- 47 (fluid adj3 (balance or intervention or management or volume or therapy or replacement or restriction or resuscitation)).tw. (59280)
- 48 (volume adj3 (balance or intervention or management or therapy or replacement or restriction or resuscitation)).tw. (11794)
- 49 (colloid* or crystalloid*).tw. (105122)
- 50 (ringer* adj2 lactate*).tw. (8908)
- 51 Sodium Chloride/(216552)
- 52 exp Hypertonic Solutions/(17443)
- 53 Hypotonic Solutions/(5403)
- 54 d5w.tw. (620)
- 55 dextrose.tw. (21245)
- 56 (saline or sodium chloride).tw. (374747)
- 57 or/43-56 (795825)
- 58 42 and 57 (816)
- 59 (early recovery or eras).tw. (10579)
- 60 Critical Pathways/(11909)
- 61 (caremap* or care map*).tw. (500)
- 62 (care adj (plan* or pathway*)).tw. (28718)

63	((critical or clinical) adj pathway*).tw. (8531)
64	(enhanced recovery or fast track* or fasttrack*).tw. (10125
65	early discharge.tw. (5089)
66	or/59-65 (67709)
67	42 and 66 (304)
68	58 or 67 (1097)
69	animals/not humans/(5296415)
70	68 not 69 (1003)
71	70 use prmz (307)
72	36 or 71 (946)
73	remove duplicates from 72 (694)
74	73 use prmz (305)Medline
75	73 use emczd (389)Embase

Pubmed—January 12, 2016

((((((((((((((((("volume replacement") OR "volume balance") OR "volume intervention") OR "volume management") OR "volume therapy") OR "volume restriction") OR "volume resuscitation"))) OR (((((((("fluid balance") OR "fluid intervention") OR "fluid management") OR "fluid therapy") OR "fluid volume") OR "fluid replacement") OR "fluid restriction") OR "fluid resuscitation") OR fluid[Title])) OR ((ringers[Title/Abstract] AND lactate[Title/Abstract]))) OR ((ringers[Title/ Abstract] AND lactated[Title/Abstract]))) OR ("enhanced recovery" or fast track or fasttrack or early discharge or "critical path*" or "clinical path*" or "care plan" or "care map*")) OR ((((((saline) OR sodium chloride))) OR dextrose[Title/Abstract]))) OR ((colloid*[Title/Abstract]) OR crystalloid*[Title/Abstract]))) AND ((((((((((pancreaticoduodenectomy[Title/Abstract]) OR pancreaticoduodenectomy[Other Term]) OR pancreas resection[Title/Abstract]) OR pancreas resection[Other Term]) OR pancreas surgery[Title/Abstract]) OR pancreas surgery[Other Term]) OR whipple[Title/Abstract]) OR whipple[Other Term]) OR Pancreatectomy[Title/Abstract]) OR Pancreatectomy[Other Term]))) AND (pubstatusaheadofprint OR publisher[sb] OR pubmednotmedline[sb]) - 8 references

Cochrane

🟅 للاستشارات

Search Name: Martel-Guillaume_Pancreaticoduodenectomy-Fluids_2016-01-12

Date Run: January 12, 2016, 18:35:22.802 Description:

ID	Search	Hits
#1	MeSH descriptor: [Pancreatectomy] explode all trees	180
#2	MeSH descriptor: [Pancreaticoduodenectomy]	235

iy j explode all trees

ID	Search	Hits
#3	whipple* near/5 (pancrea* or surg* or resect* or procedure* or operation*):ti,ab,kw (Word variations have been searched)	78
#4	Pancreatectom* or pancreatoduodenectom* or Pancreaticoduodenectom* or duodenopancreatectom* or pancreat* duodenectom*:ti,ab,kw (Word variations have been searched)	608
#5	(duodenopancrea* or pancrea*) near/2 (surg* or resect*):ti,ab,kw (Word variations have been searched)	722
#6	#1 or #2 or #3 or #4 or #5	1048
#7	MeSH descriptor: [Fluid Therapy] explode all trees	1289
#8	MeSH descriptor: [Rehydration Solutions] explode all trees	264
#9	MeSH descriptor: [Isotonic Solutions] explode all trees	701
#10	MeSH descriptor: [Colloids] explode all trees	5708
#11	fluid near/3 (balance or intervention or management or volume or therapy or replacement or restriction or resuscitation):ti,ab,kw (Word variations have been searched)	3861
#12	volume near/3 (balance or intervention or management or therapy or replacement or restriction or resuscitation):ti,ab,kw (Word variations have been searched)	1145
#13	colloid* or crystalloid*:ti,ab,kw (Word variations have been searched)	2211
#14	ringer* near/2 lactate*:ti,ab,kw (Word variations have been searched)	740
#15	MeSH descriptor: [Sodium Chloride] this term only	1906
#16	MeSH descriptor: [Hypertonic Solutions] explode all trees	595
#17	MeSH descriptor: [Hypotonic Solutions] explode all trees	63
#18	d5w:ti,ab,kw (Word variations have been searched)	49
#19	"dextrose":ti,ab,kw (Word variations have been searched)	1134
#20	saline or sodium chloride:ti,ab,kw (Word variations have been searched)	20761
#21	#7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20	32766
#22	#6 and #21	46
#23	(early recovery or eras):ti,ab,kw (Word variations have been searched)	5535
#24	MeSH descriptor: [Critical Pathways] explode all trees	278
#25	(caremap* or care map*):ti,ab,kw (Word variations have been searched)	669
#26	care near (plan* or pathway*):ti,ab,kw (Word variations have been searched)	2295

Deringer

ID	Search	Hits
#27	(critical or clinical) near pathway*:ti,ab,kw (Word variations have been searched)	645
#28	(enhanced recovery or fast track* or fasttrack*):ti,ab,kw (Word variations have been searched)	2559
#29	early discharge:ti,ab,kw (Word variations have been searched)	3035
#30	#23 or #24 or #25 or #26 or #27 or #28 or #29	13343
#31	#6 and #30	36
#32	#22 or #31	68 Clinical Trials

Appendix 2: Forest plots for in-hospital and 90-day mortality

In-hospital mortality

References

- Ahmad SA, Edwards MJ, Sutton JM et al (2012) Factors influencing readmission after pancreaticoduodenectomy: a multi-institutional study of 1302 patients. Ann Surg 256(3):529–537. https://doi.org/10.1097/SLA.0b013e318265ef0b
- Winter JM, Cameron JL, Campbell KA et al (2006) 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience. J Gastrointest Surg 10(9):1199–1210. https://doi.org/ 10.1016/j.gassur.2006.08.018 (discussion 1210–1191)
- Braga M, Capretti G, Pecorelli N et al (2011) A prognostic score to predict major complications after pancreaticoduodenectomy. Ann Surg 254(5):702–707. https://doi.org/10.1097/sla. 0b013e31823598fb (discussion 707–708)
- Schmidt CM, Powell ES, Yiannoutsos CT et al (2004) Pancreaticoduodenectomy: a 20-year experience in 516 patients. Arch Surg 139(7):718–725. https://doi.org/10.1001/archsurg.139.7.718 (discussion 725–717)
- Fernandez-del Castillo C, Morales-Oyarvide V, McGrath D et al (2012) Evolution of the Whipple procedure at the Massachusetts General Hospital. Surgery 152(3 Suppl 1):S56–S63. https://doi. org/10.1016/j.surg.2012.05.022
- Grobmyer SR, Pieracci FM, Allen PJ et al (2007) Defining morbidity after pancreaticoduodenectomy: use of a prospective complication grading system. J Am Coll Surg 204(3):356–364. https://doi.org/10.1016/j.jamcollsurg.2006.11.017

	Restric	tive	Standa	ard		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
van Samkar 2015	1	34	1	32	45.2%	0.94 [0.06, 15.68]	
Wang 2014	1	90	1	57	54.8%	0.63 [0.04, 10.26]	
Total (95% CI)		124		89	100.0%	0.77 [0.11, 5.59]	
Total events	2		2				
Heterogeneity: Chi² = Test for overall effect:	0.04, df= Z=0.26 (1 (P = P = 0.8	0.84); I² = 0)	0%			0.01 0.1 1 10 100 Favours restrictive Favours standard

90-day mortality

	Restric	tive	Standa	ard		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Fischer 2010	0	65	0	65		Not estimable	
Lavu 2014	4	131	3	128	100.0%	1.31 [0.29, 5.98]	
Total (95% CI)		196		193	100.0%	1.31 [0.29, 5.98]	
Total events	4		3				
Heterogeneity: Not	applicable						
Test for overall effe	ct: Z = 0.35 (P = 0.7	3)				Favours restrictive Favours standard

- Emick DM, Riall TS, Cameron JL et al (2006) Hospital readmission after pancreaticoduodenectomy. J Gastrointest Surg 10(9):1243–1252. https://doi.org/10.1016/j.gassur.2006.08.016 (discussion 1252–1243)
- Santema TB, Visser A, Busch OR et al (2015) Hospital costs of complications after a pancreatoduodenectomy. HPB (Oxford) 17(8):723–731. https://doi.org/10.1111/hpb.12440
- Enestvedt CK, Diggs BS, Cassera MA et al (2012) Complications nearly double the cost of care after pancreaticoduodenectomy. Am J Surg 204(3):332–338. https://doi.org/10.1016/j.amjsurg. 2011.10.019
- Wu W, He J, Cameron JL et al (2014) The impact of postoperative complications on the administration of adjuvant therapy following pancreaticoduodenectomy for adenocarcinoma. Ann Surg Oncol 21(9):2873–2881. https://doi.org/10.1245/s10434-014-3722-6
- Lawson EH, Hall BL, Louie R et al (2013) Association between occurrence of a postoperative complication and readmission: implications for quality improvement and cost savings. Ann Surg 258(1):10–18. https://doi.org/10.1097/SLA.0b013e31828e3ac3
- Gani F, Hundt J, Makary MA et al (2016) Financial impact of postoperative complication following hepato-pancreatico-biliary surgery for cancer. Ann Surg Oncol 23(4):1064–1070. https://doi. org/10.1245/s10434-015-5042-x
- Hart RA, Dupaix JP, Rusa R et al (2013) Reduction of airway complications with fluid management protocol in patients undergoing cervical decompression and fusion across the cervicothoracic junction. Spine (Phila Pa 1976) 38(18):E1135–E1140. https://doi.org/10.1097/brs.0b013e31829914ed
- Nossaman VE, Richardson WS 3rd, Wooldridge JB Jr et al (2015) Role of intraoperative fluids on hospital length of stay in laparoscopic bariatric surgery: a retrospective study in 224 consecutive patients. Surg Endosc 29(10):2960–2969. https://doi.org/ 10.1007/s00464-014-4029-1
- Ettinger KS, Yildirim Y, Van Ess JM et al (2015) Impact of intraoperative fluid administration on length of postoperative hospital stay following orthognathic surgery. J Oral Maxillofac Surg 73(1):22–29. https://doi.org/10.1016/j.joms.2014.07.029
- McArdle GT, McAuley DF, McKinley A et al (2009) Preliminary results of a prospective randomized trial of restrictive versus standard fluid regime in elective open abdominal aortic aneurysm repair. Ann Surg 250(1):28–34. https://doi.org/10.1097/SLA. 0b013e3181ad61c8
- Mythen MG, Webb AR (1994) Intra-operative gut mucosal hypoperfusion is associated with increased post-operative complications and cost. Intensive Care Med 20(2):99–104
- Marjanovic G, Villain C, Juettner E et al (2009) Impact of different crystalloid volume regimes on intestinal anastomotic stability. Ann Surg 249(2):181–185. https://doi.org/10.1097/SLA. 0b013e31818b73dc
- Kulemann B, Timme S, Seifert G et al (2013) Intraoperative crystalloid overload leads to substantial inflammatory infiltration of intestinal anastomoses—a histomorphological analysis. Surgery 154(3):596–603. https://doi.org/10.1016/j.surg.2013.04.010
- Holte K, Sharrock NE, Kehlet H (2002) Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth 89(4):622–632
- Nessim C, Sideris L, Turcotte S et al (2013) The effect of fluid overload in the presence of an epidural on the strength of colonic anastomoses. J Surg Res 183(2):567–573. https://doi.org/10. 1016/j.jss.2013.03.030
- 22. Srinivasa S, Hill AG (2012) Perioperative fluid administration: historical highlights and implications for practice. Ann Surg 256(6):1113–1118. https://doi.org/10.1097/SLA. 0b013e31825a2f22

- Lobo DN, Bostock KA, Neal KR et al (2002) Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet 359(9320):1812–1818. https://doi.org/10.1016/s0140-6736(02)08711-1
- Brandstrup B, Tonnesen H, Beier-Holgersen R et al (2003) Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238(5):641–648. https://doi.org/10.1097/01.sla.0000094387. 50865.23
- Nisanevich V, Felsenstein I, Almogy G et al (2005) Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 103(1):25–32
- 26. Kabon B, Akca O, Taguchi A et al (2005) Supplemental intravenous crystalloid administration does not reduce the risk of surgical wound infection. Anesth Analg 101(5):1546–1553. https://doi.org/10.1213/01.ane.0000180217.57952.fe
- Kalyan JP, Rosbergen M, Pal N et al (2013) Randomized clinical trial of fluid and salt restriction compared with a controlled liberal regimen in elective gastrointestinal surgery. Br J Surg 100(13):1739–1746. https://doi.org/10.1002/bjs.9301
- MacKay G, Fearon K, McConnachie A et al (2006) Randomized clinical trial of the effect of postoperative intravenous fluid restriction on recovery after elective colorectal surgery. Br J Surg 93(12):1469–1474. https://doi.org/10.1002/bjs.5593
- Abraham-Nordling M, Hjern F, Pollack J et al (2012) Randomized clinical trial of fluid restriction in colorectal surgery. Br J Surg 99(2):186–191. https://doi.org/10.1002/bjs.7702
- Futier E, Constantin JM, Petit A et al (2010) Conservative vs restrictive individualized goal-directed fluid replacement strategy in major abdominal surgery: a prospective randomized trial. Arch Surg 145(12):1193–1200. https://doi.org/10.1001/archsurg.2010. 275
- Rahbari NN, Zimmermann JB, Schmidt T et al (2009) Metaanalysis of standard, restrictive and supplemental fluid administration in colorectal surgery. Br J Surg 96(4):331–341. https://doi. org/10.1002/bjs.6552
- 32. Boland MR, Noorani A, Varty K et al (2013) Perioperative fluid restriction in major abdominal surgery: systematic review and meta-analysis of randomized, clinical trials. World J Surg 37(6):1193–1202. https://doi.org/10.1007/s00268-013-1987-8
- 33. Varadhan KK, Lobo DN (2010) A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc 69(4):488–498. https://doi.org/10.1017/s0029665110001734
- Chong PC, Greco EF, Stothart D et al (2009) Substantial variation of both opinions and practice regarding perioperative fluid resuscitation. Can J Surg 52(3):207–214
- Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1371/ journal.pmed.1000097
- 36. Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–2012
- Higgins JP, Altman DG, Gotzsche PC et al (2011) The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 343:d5928. https://doi.org/10.1136/bmj.d5928
- Slim K, Nini E, Forestier D et al (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73(9):712–716
- 39. Abraham NS, Byrne CJ, Young JM et al (2010) Meta-analysis of well-designed nonrandomized comparative studies of surgical procedures is as good as randomized controlled trials. J Clin

www.manaraa.com

Epidemiol 63(3):238–245. https://doi.org/10.1016/j.jclinepi.2009. 04.005

- 40. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13. https://doi.org/10.1186/1471-2288-5-13
- Higgins JP, Thompson SG, Deeks JJ et al (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. https:// doi.org/10.1136/bmj.327.7414.557
- 42. Fischer M, Matsuo K, Gonen M et al (2010) Relationship between intraoperative fluid administration and perioperative outcome after pancreaticoduodenectomy: results of a prospective randomized trial of acute normovolemic hemodilution compared with standard intraoperative management. Ann Surg 252(6):952–958
- 43. Lavu H, Sell NM, Carter TI et al (2014) The HYSLAR trial: a prospective randomized controlled trial of the use of a restrictive fluid regimen with 3% hypertonic saline versus lactated ringers in patients undergoing pancreaticoduodenectomy. Ann Surg 260:445–455
- 44. van Samkar G, Eshuis WJ, Bennink RJ et al (2015) Intraoperative fluid restriction in pancreatic surgery: a double blinded randomised controlled trial. PLoS ONE 10(10):e0140294
- Vermeulen H, Hofland J, Legemate DA et al (2009) Intravenous fluid restriction after major abdominal surgery: a randomized blinded clinical trial. Trials 10:50. https://doi.org/10.1186/1745-6215-10-50
- 46. Braga M, Pecorelli N, Ariotti R et al (2014) Enhanced recovery after surgery pathway in patients undergoing pancreaticoduodenectomy. World J Surg 38(11):2960–2966
- Wang S, Wang X, Dai H et al (2014) The effect of intraoperative fluid volume administration on pancreatic fistulas after pancreaticoduodenectomy. J Investig Surg 27(2):88–94
- 48. Bassi C, Dervenis C, Butturini G et al (2005) Postoperative pancreatic fistula: an international study group (ISGPF)

definition. Surgery 138(1):8–13. https://doi.org/10.1016/j.surg. 2005.05.001

- 49. Wente MN, Bassi C, Dervenis C et al (2007) Delayed gastric emptying (DGE) after pancreatic surgery: a suggested definition by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 142(5):761–768. https://doi.org/10.1016/j.surg.2007.05. 005
- Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240(2):205–213
- 51. Brandstrup B (2006) Fluid therapy for the surgical patient. Best Pract Res Clin Anaesthesiol 20(2):265–283
- Mythen MG, Swart M, Acheson N et al (2012) Perioperative fluid management: consensus statement from the enhanced recovery partnership. Perioper Med (Lond) 1:2. https://doi.org/10.1186/ 2047-0525-1-2
- Navarro LH, Bloomstone JA, Auler JO Jr et al (2015) Perioperative fluid therapy: a statement from the international Fluid Optimization Group. Perioper Med (Lond) 4:3. https://doi.org/10. 1186/s13741-015-0014-z
- 54. Wilms H, Mittal A, Haydock MD et al (2014) A systematic review of goal directed fluid therapy: rating of evidence for goals and monitoring methods. J Crit Care 29(2):204–209. https://doi.org/10.1016/j.jcrc.2013.10.019
- Rollins KE, Lobo DN (2016) Intraoperative goal-directed fluid therapy in elective major abdominal surgery: a meta-analysis of randomized controlled trials. Ann Surg 263(3):465–476. https:// doi.org/10.1097/sla.00000000001366
- 56. Lassen K, Coolsen MM, Slim K et al (2012) Guidelines for perioperative care for pancreaticoduodenectomy: enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr 31(6):817–830. https://doi.org/10.1016/j.clnu.2012.08. 011

www.manaraa.com

2950

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.

